Answer:
[tex]z=\frac{0.05 -0.06}{\sqrt{\frac{0.06(1-0.06)}{97}}}=-0.415[/tex] Â
Now we can find the p value with the following probability:
[tex]p_v =P(z<-0.415)=0.3409[/tex] Â
Step-by-step explanation:
Information given
n=97 represent the random sample taken
[tex]\hat p=0.05[/tex] estimated proportion of defective
[tex]p_o=0.06[/tex] is the value to verify
z would represent the statistic
[tex]p_v[/tex] represent the p value
Hypothesis to tests
We want to tet if the true proportion is less than 6%, the system of hypothesis are: Â
Null hypothesis:[tex]p\geq 0.06[/tex] Â
Alternative hypothesis:[tex]p < 0.06[/tex] Â
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1) Â
Replacing the info given we got:
[tex]z=\frac{0.05 -0.06}{\sqrt{\frac{0.06(1-0.06)}{97}}}=-0.415[/tex] Â
Now we can find the p value with the following probability:
[tex]p_v =P(z<-0.415)=0.3409[/tex] Â