Respuesta :
Answer:
y(x,t)=-0.395m
Explanation:
The wave function modeling waves are:
[tex]y_1(x,t)[/tex]= (0.4 m)sin[(3 [tex]m^-^1[/tex])x + (2 [tex]s^-^1[/tex])t]
[tex]y_2(x,t)[/tex]=(0.8 m)sin[(6 [tex]m^-^1[/tex])x − (5 [tex]s^-^1[/tex])t]
The principle of superposition can be defined as the resultant of [tex]y_1[/tex] and [tex]y_2[/tex] is equal to their algebraic sum
[tex]y(x,t)=y_1(x,t)+y_2(x,t)[/tex]
y(x,t)= (0.4 m)sin[(3 [tex]m^-^1[/tex])x + (2 [tex]s^-^1[/tex])t] + (0.8 m)sin[(6 [tex]m^-^1[/tex])x − (5 [tex]s^-^1[/tex])t]
Substitute 0.9m for x and 0.4s for t as required
y(x,t)= (0.4 )sin[(3 [tex]m^-^1[/tex])(0.9) + (2 [tex]s^-^1[/tex])(0.4)] + (0.8 m)sin[(6 [tex]m^-^1[/tex])(0.9)− (5 [tex]s^-^1[/tex])(0.4)]
y(x,t)= -0.14 - 0.255
y(x,t)=-0.395m
The vertical displacement of the resultant wave formed by the interference of the two waves is -0.395m
Interference of waves:
Two sinusoidal waves are given such that:
y₁(x, t) = (0.4 m)sin[(3 m⁻¹)x + (2s⁻¹)t] and
y₂(x, t) = (0.8 m)sin[(6 m⁻¹)x − (5s⁻¹)t]
The superposition of the two waves gives the outcome of the interference at x = 0.9 m and t = 0.4 s.
y(x,t) = y₁(x, t) + y₂(x, t)
y(0.9,0.4) = y₁(0.9, 0.4) + y₂(0.9, 0.4)
y(0.9,0.4) = (0.4 m)sin[(3 m⁻¹)0.9 + (2s⁻¹)0.4] + (0.8 m)sin[(6 m⁻¹)0.9 − (5s⁻¹)0.4]
y(0.9,0.4) = -0.395m
Learn more about interference:
https://brainly.com/question/16098226?referrer=searchResults