Simplifying exponents (picture provided)
Answer:
3^2 ; Option B
Step-by-step explanation:
We are given the equation 3^ -6 * ( 3^4 / 3^0 )^2, which can be solved through the application of exponential rules;
[tex]3^{ - 6 } * ( 3^{ 4 } / 3^{ 0 } )^{2} - take 3^{ 0 } as 1,\\\\3^{ - 6 } * ( 3^{ 4 } / 1 )^{2} - take 3^{4} to power of 2, ( * of exponents ),\\\\3^{ - 6 } * ( 3^{ 8 } ) - combine powers, adding exponents,\\\\3^{ - 6 + 8 } - add like terms,\\\\3^{2} \\\\Solution; 3^{2}[/tex]
3^2 ; Option B
Answer:
The answer would be [tex]3^{2}[/tex].
Step-by-step explanation:
-Solve the following equation:
[tex]3^{-6} \times ( 3^{4} \div 3^{0})^{2}[/tex]
-When dividing integers, the exponents would subtract each other. So, you subtract exponent [tex]0[/tex] and [tex]4[/tex]:
[tex]3^{-6} \times ( 3^{4} \div 3^{0})^{2}[/tex]
[tex]3^{-6} \times ( 3^{4})^{2}[/tex]
-Simplify [tex]3^{4}[/tex] by the exponent [tex]2[/tex]:
[tex]3^{-6} \times ( 3^{4})^{2}[/tex]
[tex]3^{-6} \times 3^{8}[/tex]
-When multiplying integers, the exponent would add up together. So, you would add [tex]-6[/tex] and [tex]8[/tex]:
[tex]3^{-6} \times 3^{8}[/tex]
[tex]3^{2}[/tex]
So, the answer is [tex]3^{2}[/tex].