Respuesta :
SEE BELOW FOR THE CORRECT FORMAT OF THE QUESTION
Answer:
(a) [tex]\mathbf{C_{(t)} =\dfrac{I}{F} [ 1- e \dfrac{-Ft}{v}+ C_oe \dfrac{-Ft}{v} ]}[/tex]
(b) [tex]\mathbf{\lim_{t \to \infty} C_t = \dfrac{I}{F}[1-0+ 0 ] \ = \dfrac{I}{F}}[/tex]
(c) T = 6.02619 years
(d) T = 431.593 years
Step-by-step explanation:
(a)
[tex]\dfrac{dC}{dt} = -\dfrac{F}{v}C + \dfrac{I}{v} \\ \\ \\ \dfrac{dC}{dt} + \dfrac{F}{v}C = \dfrac{I}{v}[/tex]
By integrating the factor of this linear differential equation ; we have :
[tex]= e \int\limits \dfrac{F}{v}t \\ \\ \\ = e \dfrac{Ft}{v}[/tex]
[tex]C* e \frac{Ft}{v}= \int\limits \dfrac{I}{v}*e \dfrac{Ft}{v} dt[/tex]
[tex]C* e \frac{Ft}{v}= \dfrac{I}{v}* \dfrac{e \frac{Ft}{v} }{F/v}+ K[/tex]
[tex]C* e \frac{Ft}{v}= \dfrac{I}{v}* \dfrac{V}{F} e \dfrac{Ft}{v} + K[/tex]
[tex]Ce \dfrac{Ft}{v} = \dfrac{I}{F} \ * \ e \dfrac{Ft}{v} + k \ \ \ \ (at \ t = 0 \ ; C = C_o)[/tex]
[tex]C_o = \dfrac{I}{F} e^o + K[/tex]
[tex]K = C_o - \dfrac{I}{F}[/tex]
[tex]C_{(t)} = [ \dfrac{I}{F}e \dfrac{Ft}{v}+ C_o - \dfrac{I}{F}] e\dfrac{-Ft}{v}[/tex]
[tex]C_{(t)} =\dfrac{I}{F} [ e \dfrac{Ft}{v} * e \dfrac{-Ft}{v}+ C_oe \dfrac{-Ft}{v} - 1* e \dfrac{-Ft}{v}][/tex]
[tex]\mathbf{C_{(t)} =\dfrac{I}{F} [ 1- e \dfrac{-Ft}{v}+ C_oe \dfrac{-Ft}{v} ]}[/tex]
(b)
[tex]\lim_{t \to \infty} C_t = \dfrac{I}{F}[1-e^{- \infty} + C_o e^{- \infty} ][/tex]
since [tex](e^{- \infty} = 0)[/tex]
[tex]\mathbf{\lim_{t \to \infty} C_t = \dfrac{I}{F}[1-0+ 0 ] \ = \dfrac{I}{F}}[/tex]
(c)
V = 458 km³ and F = 175 km³ , I = 0
[tex]\dfrac{dC}{dt} = - \dfrac{-175}{458}C[/tex]
[tex]= \int\limits \ \dfrac{dC}{C} = - \dfrac{175}{458}\int\limits dt[/tex]
[tex]In (C_{(t)}) = - \dfrac{175}{458} t + K[/tex]
[tex]C_{(t)} = e \dfrac{-175}{458}t + K[/tex]
Let at time t = 0 [tex]C_{(t)}} = C_o \to C_o = e^{0+k} = e^K[/tex]
[tex]C_{(t)} = e \dfrac{-175}{458}t[/tex]
Now at time t = T ; [tex]C_{9t)} = \dfrac{C_o}{10}[/tex]
[tex]\dfrac{C_o}{10} = C_o e \dfrac{-175}{458}T \to \dfrac{1}{10} = e \dfrac{-175}{458}T[/tex]
[tex]In ( \dfrac{1}{10}) = \dfrac{-175}{459}T[/tex]
[tex]- In (10) = \dfrac{175}{458}T[/tex]
[tex]T = \dfrac{458}{175} In (10)[/tex]
T = 6.02619 years
(d) V = 12221 km³
F = 65.2 km³/ year
[tex]\mathbf{T = \dfrac{v}{F}In (10)}[/tex]
[tex]T = \dfrac{12221}{65.2}In (10)[/tex]
T = 431.593 years