Suppose the kicker launches the ball at 60∘ instead of 30∘. Assuming that the goal is 4.55 m high and 40 m away, what minimum initial speed v0 would the ball need to have in order to just clear the goal?

Respuesta :

Answer:22 m/s

Explanation:

Given

launch angle [tex]\theta =60^{\circ}[/tex]

height of goal [tex]h=4.55\ m[/tex]

and horizontal distance [tex]x=40\ m[/tex]

Suppose initial speed is [tex]u[/tex]

Trajectory of a Projectile is given by

[tex]y=x\tan \theta -\frac{1}{2}\frac{gx^2}{u^2\cos ^2\theta }[/tex]

substituting the values we get

[tex]4.55=40\tan (60)-0.5\times \frac{9.8\times (40)^2}{u^2\cdot \cos ^260 }[/tex]

[tex]4.55=69.28-0.5\times \frac{15,680}{u^2\cdot 0.25}[/tex]

[tex]\frac{31,360}{u^2}=69.28-4.55[/tex]

[tex]\frac{31,360}{64.73}=u^2[/tex]

[tex]u^2=484.47[/tex]

[tex]u=22.01\ m/s[/tex]

So, initial launch speed is [tex]22\ m/s[/tex]

Q&A Education