Answer:
[tex]\hat p=\frac{92}{1500}=0.0613[/tex] estimated proportion of unemployed
[tex]z=\frac{0.0613 -0.05}{\sqrt{\frac{0.05(1-0.05)}{1500}}}=2.01[/tex]
Step-by-step explanation:
Information given
n=1500 represent the random sample taken
X=92 represent the number of people unemployed
[tex]\hat p=\frac{92}{1500}=0.0613[/tex] estimated proportion of unemployed
[tex]p_o=0.05[/tex] is the value to value to test
z would represent the statistic
[tex]p_v[/tex] represent the p value
System of hypothesis
We want to test if the true proportion is lower than 0.05 or no and the system of hypothesis are::
Null hypothesis:[tex]p \geq 0.5[/tex]
Alternative hypothesis:[tex]p < 0.5[/tex]
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Replacing the info given we got:
[tex]z=\frac{0.0613 -0.05}{\sqrt{\frac{0.05(1-0.05)}{1500}}}=2.01[/tex]