A small block is released from rest at the top of a frictionless incline. The block travels a distance 0.633 m in the first second after it is released. How far does it travel in the next second

Respuesta :

Answer:1.89 m

Explanation:

Given

Block travels [tex]0.63\ m[/tex] in first second

It is released from rest i.e. initial speed is zero (u=0)

using

[tex]s=ut+\frac{1}{2}at^2[/tex]

where a=acceleration

here acceleration is the component of gravity on incline plane (say [tex]\theta [/tex])

so

[tex]s_1=\frac{1}{2}\times g\sin \theta (1)^2[/tex]

[tex]0.633\times 2=9.8\sin \theta \times 1^2[/tex]

[tex]\sin\theta =0.1291[/tex]

[tex]\theta =7.41^{\circ}[/tex]

So distance traveled in [tex]2\ sec[/tex]

[tex]s=\frac{1}{2}\times g\sin \theta (2)^2[/tex]

[tex]s=0.5\times 9.8\times \sin (7.41)\times 4[/tex]

[tex]s=2.52\ m[/tex]

So distance traveled in [tex]2^{nd}\ sec[/tex] is

[tex]s-s_1=2.52-0.633=1.89\ m[/tex]

Q&A Education