Respuesta :

Answer:

The sum of the arithmetic series

[tex]S_{n} = \frac{n}{2} (2 a + (n-1) d)[/tex]

Step-by-step explanation:

Explanation

Let  a , a+d , a+2 d , ..........a+(n-1)d +....... is an arithmetic sequence

The sum of the sequence is called arithmetic series

The [tex]n^{th}[/tex] term of the sequence

[tex]t_{n} = a + (n-1) d[/tex]

The sum of the arithmetic series

[tex]S_{n} = \frac{n}{2} (2 a + (n-1) d)[/tex]

Here 'a' is the first term of the sequence

and 'd' be the difference between two values

sum of first term

put n=1  ⇒  [tex]S_{1} = a[/tex]

Put n =2 ⇒ [tex]S_{2} = \frac{2}{2} (2 a + (2-1)d)[/tex]

                  [tex]S_{2} = 2 a + d[/tex]

......and so on

The sum of the  arithmetic series

[tex]S_{n} = \frac{n}{2} (2 a + (n-1) d)[/tex]

                           

Q&A Education