Respuesta :

Answer:

[tex]f(n)=f(n-1)+22[/tex].

Step-by-step explanation:

Note: In the given function it should be (n-1) instead of (n=1).

Consider the given function is

[tex]f(n)=-11+22(n-1)[/tex]

It is the explicit form of an A.P.

For [tex]n=1[/tex],

[tex]f(1)=-11+22(1-1)=-11+0=-11[/tex]

For [tex]n=2[/tex],

[tex]f(2)=-11+22(2-1)=-11+22=11[/tex]

Common difference is  

[tex]d=a_2-a_1=11-(-11)=11+11=22[/tex]

The recursive formula of an A.P. is

[tex]f(n)=f(n-1)+d[/tex]

Substitute [tex]d=22[/tex] in the above formula.

[tex]f(n)=f(n-1)+(22)[/tex]

[tex]f(n)=f(n-1)+22[/tex]

Therefore, required recursive formula is [tex]f(n)=f(n-1)+22[/tex].

Q&A Education