Answer:
Explanation:
Given that:
Heater temperature ,T₁ = 1000K
Vaccum Chamber ,T₂ = 300K
emissivity of heater E₁ = 0.75
emissivity vaccum E₂ = 0.25
Heater diameter d₁ = 10 * 10⁻³mm
vaccum chamber d₂ = 50 * 10⁻³mm
When there is vaccum, then no air resistance will be there,
F₁₂ = 1
F₁₁ = 0
[tex]R_1= \frac{1-E_1}{E_1A_1} \\\\=\frac{1-0.75}{0.75*\pi * 10^-^2*L}[/tex]
[tex]R_2=\frac{1}{F_1_2 * A_1} \\\\=\frac{1}{1* \pi *10^-^2*L}[/tex]
[tex]R_3=\frac{1-0.25}{F_1_2 * A_1} \\\\=\frac{1}{0.25* \pi *5*10^-^2*L}[/tex]
Heat leaving from heater surface 1 to vaccum
[tex]Q_1_2 = \frac{L \pi \sigma (T_1^4- T_2^4)}{R_1+R_2+R_3}[/tex]
[tex]Q_1_2 = \frac{1000*10^-^3*\pi * 5.67*10^-^8(1000^4-300^4)}{\frac{0.25}{0.75*10^-2}+\frac{1}{10^-2} +\frac{0.75}{0.25*10^-^2*5} }[/tex]
[tex]Q_1_2 = \frac{1000*10^-^3*\pi * 5.67*10^-^8(1000^4-300^4)} {0.3333+1+0.6}\\\\Q_1_2= 91.39 \text {watt}[/tex]