Respuesta :

Answer:

[tex]sin 240^\circ = - \dfrac{\sqrt{3}}{2}[/tex]

Step-by-step explanation:

We are given that:

[tex]sin 60^\circ = \dfrac{\sqrt{3}}{2}[/tex]

We need to find

[tex]sin 240^\circ = ?[/tex]

240 is greater than 180 and lesser than 270

OR

[tex]180^\circ<240^\circ<270^\circ[/tex]

So, Angle [tex]240 ^\circ[/tex] lies in the 3rd quadrant and it is well known that value of sine in 3rd quadrant is negative.

Using the property :

[tex]sin(\pi + \theta) = -sin\theta[/tex] or

[tex]sin(180^\circ + \theta) = -sin\theta[/tex]

Here, [tex]\theta\ is\ 60^\circ[/tex].

[tex]sin 240^\circ =sin(180^\circ + 60^\circ) = -sin60^\circ\\\Rightarrow -\dfrac{\sqrt{3}}{2}[/tex]

Hence, the value

[tex]sin 240^\circ = - \dfrac{\sqrt{3}}{2}[/tex]

Q&A Education