Answer:
The size will be "431".
Step-by-step explanation:
On assuming:
P1 = 0.5
P2 = 0.5
Now,
[tex]q1=1-p1[/tex]
[tex]=1-0.5[/tex]
[tex]=0.5[/tex]
and,
[tex]q2=1-p2[/tex]
[tex]=1-0.5[/tex]
[tex]=0.5[/tex]
Margin's error will be,
E = 0.07
For 96% CI critical will be:
Z = 2.054
So,
Sample size = [tex](p1q1+p2q2)\times (\frac{Z}{E})^2[/tex]
On putting the estimated values, we get
= [tex](0.5\times 0.5+0.5\times 0.5)\times (\frac{2.054}{0.07})^2[/tex]
= [tex](0.25+0.25)\times (29.3)^2[/tex]
= [tex](0.5)\times (858.49)[/tex]
= 431