You do a study of hypnotherapy to determine how effective it is in increasing the number of hours of sleep subjects get each night. You measure hours of sleep for 12 subjects with the following results. Construct a 95% confidence interval for the mean number of hours slept for the population (assumed normal) from which you took the data AND determine the margin of error EBM.

DATA: 8.2; 9.1; 7.7; 8.6; 6.9; 11.2; 10.1; 9.9; 8.9; 9.2; 7.5; 10.5

Respuesta :

Answer:

Confidence interval

[tex]8.98-2.2\frac{1.29}{\sqrt{12}}=8.16[/tex]    

[tex]8.98+2.2\frac{1.29}{\sqrt{12}}=9.80[/tex]  

And the margin of error would be:

[tex] ME=2.2\frac{1.29}{\sqrt{12}}=0.819[/tex]

Step-by-step explanation:

For this case we have the followig dataset:

DATA: 8.2; 9.1; 7.7; 8.6; 6.9; 11.2; 10.1; 9.9; 8.9; 9.2; 7.5; 10.5

We can calculate the mean and the deviation with the following formulas:

[tex]\bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex]s =\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]

And replacing we got:

[tex] \bar X= 8.98[/tex

[tex]s = 1.29[/tex]

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

The degrees of freedom are given by:

[tex]df=n-1=12-1=11[/tex]

The Confidence level is 0.95 or 95%, the value of significance is [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and the critical value would be [tex]t_{\alpha/2}=2.20[/tex]

Repplacing the info we got:

[tex]8.98-2.2\frac{1.29}{\sqrt{12}}=8.16[/tex]    

[tex]8.98+2.2\frac{1.29}{\sqrt{12}}=9.80[/tex]    And the margin of error would be:

[tex] ME=2.2\frac{1.29}{\sqrt{12}}=0.819[/tex]

The 95% confidence interval is [tex]\mathbf{ (8.17,9.79)}[/tex], and the margin of error is 0.81

The dataset is given as:

[tex]\mathbf{x= 8.2; 9.1; 7.7; 8.6; 6.9; 11.2; 10.1; 9.9; 8.9; 9.2; 7.5; 10.5}[/tex]

Start by calculating the sample mean

This is calculated as:

[tex]\mathbf{\bar x = \frac{\sum x}{n}}[/tex]

[tex]\mathbf{\bar x= \frac{8.2+ 9.1+ 7.7+ 8.6+ 6.9+11.2+ 10.1+ 9.9+ 8.9+ 9.2+ 7.5+ 10.5}{12}}[/tex]

[tex]\mathbf{\bar x= \frac{107.8}{12}}[/tex]

[tex]\mathbf{\bar x= 8.98}[/tex]

Next, calculate the sample standard deviation

This is calculated as:

[tex]\mathbf{\sigma_x = \sqrt{\frac{\sum (x - \bar x)^2}{n-1}}}[/tex]

[tex]\mathbf{\sigma_x= \sqrt{\frac{(8.2 - 8.89)^2 +.......... + (10.5- 8.89)^2}{12 - 1}}}[/tex]

[tex]\mathbf{\sigma_x= 1.29}[/tex]

Calculate the degrees of freedom

[tex]\mathbf{df = n - 1}[/tex]

[tex]\mathbf{df = 12 - 1}[/tex]

[tex]\mathbf{df = 11}[/tex]

Calculate the significance level

[tex]\mathbf{\alpha /2=\frac{1 - 95\%}2 = 0.025}[/tex]

The critical value at [tex]\mathbf{\alpha/2 = 0.025}[/tex]  and df = 11 is:

[tex]\mathbf{t_{\alpha/2} = 2.20}[/tex]

Calculate the margin of error

[tex]\mathbf{E = t_{\alpha/2} \frac{\sigma}{\sqrt n}}[/tex]

So, we have:

[tex]\mathbf{E = 2.20 \times \frac{1.29}{\sqrt{12}}}[/tex]

[tex]\mathbf{E = 0.81}[/tex]

The confidence interval is then calculated as:

[tex]\mathbf{CI =\bar x \pm E}[/tex]

So, we have:

[tex]\mathbf{CI = 8.98 \pm 0.81}}[/tex]

Split

[tex]\mathbf{CI = (8.98 - 0.81,8.98 + 0.81)}[/tex]

[tex]\mathbf{CI = (8.17,9.79)}[/tex]

So, the 95% confidence interval is [tex]\mathbf{ (8.17,9.79)}[/tex], and the margin of error is 0.81

Read more about confidence intervals and margin of errors at:

https://brainly.com/question/19426829

Q&A Education