Answer:
1) slope of the line [tex]m = \frac{1}{4}[/tex]
2) slope of the line [tex]m = \frac{11}{8}[/tex]
3) slope of the line m =2
4) slope of the line [tex]m = \frac{-8}{3}[/tex]
5) slope of the line m =7
Step-by-step explanation:
1)
Given points are (4,5) and (-4,3)
slope of the line Formula
[tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]
[tex]m = \frac{3 - 5 }{-4-4 } = \frac{-2}{-8} = \frac{1}{4}[/tex]
[tex]m = \frac{1}{4}[/tex]
2)
Given points are (-2,-4) and (6,7)
slope of the line Formula
[tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]
[tex]m = \frac{7 - (-4) }{6-(-2) } = \frac{11}{8}[/tex]
[tex]m = \frac{11}{8}[/tex]
3)
Given points are (2, -4) and (10,12)
slope of the line Formula
[tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]
[tex]m = \frac{12 - (-4) }{10-(2) } = \frac{16}{8} =2[/tex]
[tex]m = 2[/tex]
4) Given points are
(1/2,2) and (1, 2/3)
slope of the line Formula
[tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]
[tex]m = \frac{\frac{2}{3} - (2) }{1-(\frac{1}{2} ) } = \frac{\frac{-4}{3} }{\frac{1}{2} }[/tex]
[tex]m = \frac{-8}{3}[/tex]
5)
Given points are
(1/4,5) and (5/4 , 12)
slope of the line Formula
[tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]
[tex]m = \frac{12-5}{\frac{5}{4} -\frac{1}{4} } = \frac{7}{\frac{4}{4} } = 7[/tex]
[tex]m = 7[/tex]