Mixed Review for Finding Slope
Calculate the slope of the line that contains the following points. Leave answers as fractions - BUT reduce
your fractions as much as possible!!!!!!! SHOW ALL WORK!!!
1) (4,5) and (-4,3)
2) (-2,-4) and (6,7)
3) (2, -4) and (10,12) 4) (1/2,2) and (1,2/3) 5) (1/4,5) and (5/4,12)

Mixed Review for Finding Slope Calculate the slope of the line that contains the following points Leave answers as fractions BUT reduce your fractions as much a class=

Respuesta :

Answer:

1) slope of the line [tex]m = \frac{1}{4}[/tex]

2) slope of the line     [tex]m = \frac{11}{8}[/tex]

3) slope of the line   m =2

4) slope of the line   [tex]m = \frac{-8}{3}[/tex]

5) slope of the line m =7

Step-by-step explanation:

1)

Given points are  (4,5) and (-4,3)

slope of the line  Formula

             [tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]

            [tex]m = \frac{3 - 5 }{-4-4 } = \frac{-2}{-8} = \frac{1}{4}[/tex]

            [tex]m = \frac{1}{4}[/tex]

2)

Given points are (-2,-4) and (6,7)

slope of the line  Formula

             [tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]

            [tex]m = \frac{7 - (-4) }{6-(-2) } = \frac{11}{8}[/tex]

            [tex]m = \frac{11}{8}[/tex]

3)

Given points are (2, -4) and (10,12)

slope of the line  Formula

             [tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]

            [tex]m = \frac{12 - (-4) }{10-(2) } = \frac{16}{8} =2[/tex]

            [tex]m = 2[/tex]

4) Given points are

      (1/2,2) and (1, 2/3)

  slope of the line  Formula

             [tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]

            [tex]m = \frac{\frac{2}{3} - (2) }{1-(\frac{1}{2} ) } = \frac{\frac{-4}{3} }{\frac{1}{2} }[/tex]

            [tex]m = \frac{-8}{3}[/tex]

5)

Given points are

      (1/4,5) and (5/4 , 12)

  slope of the line  Formula

             [tex]m = \frac{y_{2} - y_{1} }{x_{2}-x_{1} }[/tex]

            [tex]m = \frac{12-5}{\frac{5}{4} -\frac{1}{4} } = \frac{7}{\frac{4}{4} } = 7[/tex]

            [tex]m = 7[/tex]

                     

Q&A Education