Respuesta :
Answer:
B.
Step-by-step explanation:
Recall the properties of logs and once you find the value of x, substitute it into the equation.
Option C ([tex]\frac{10}{27}[/tex]) is the correct alternative.
Given expression is:
→ [tex]3^x = 10[/tex]
By taking log both sides, we get
→ [tex]ln \ 3^x = ln \ 10[/tex]
[tex]x \ ln \ 3= ln \ 10[/tex]
[tex]x = \frac{ln \ 10}{ln \ 3}[/tex]
By substituting the value of "x" in "[tex]3^{x-3}[/tex]", we get
→ [tex]3^{x-3}[/tex] = [tex]3^{\frac{ln \ 10}{ln \ 3} -3}[/tex]
= [tex]\frac{10}{27}[/tex]
So the above is the right solution.
Learn more:
https://brainly.com/question/47626