Respuesta :

Answer:

B.

Step-by-step explanation:

Recall the properties of logs and once you find the value of x, substitute it into the equation.

Ver imagen erict01

Option C ([tex]\frac{10}{27}[/tex]) is the correct alternative.

Given expression is:

→ [tex]3^x = 10[/tex]

By taking log both sides, we get

→ [tex]ln \ 3^x = ln \ 10[/tex]

 [tex]x \ ln \ 3= ln \ 10[/tex]

         [tex]x = \frac{ln \ 10}{ln \ 3}[/tex]

By substituting the value of "x" in "[tex]3^{x-3}[/tex]", we get

→ [tex]3^{x-3}[/tex] = [tex]3^{\frac{ln \ 10}{ln \ 3} -3}[/tex]

          = [tex]\frac{10}{27}[/tex]  

So the above is the right solution.

Learn more:

https://brainly.com/question/47626

Ver imagen Cricetus
Q&A Education