A plasma is a gas of ionized (charged) particles. When plasma is in motion, magnetic effects "squeeze" its volume, inducing inward pressure known as a pinch. Consider a cylindrical tube of plasma with radius R and length L moving with velocity v along its axis. If there are n ions per unit volume and each ion has charge q , we can determine the pressure felt by the walls of the cylinder.

Required:
a. What is the volume charge density p in terms of n and q?
b. The thickness of the cylinder surface is n^1/3. What is the surface charge density σ in terms of n and q?

Respuesta :

Answer:

 a

    The volume charge density is  [tex]\rho = nq[/tex]

b

    The surface charge density is  [tex]\sigma = n^{\frac{2}{3} } q[/tex]

Explanation:

From the question we are told that

    The radius is  R

     The length is L

       The velocity is  v

        The number of ions per unit volume is  n

         The charge is  q

          The thickness of the cylinder surface is  [tex]n^{\frac{1}{3} }[/tex]

The volume charge density is mathematically represented as

      [tex]\rho = nq[/tex]

The surface charge density is mathematically represented as

    [tex]\sigma = \rho n^{\frac{1}{3} }[/tex]

substituting for  [tex]\rho[/tex]

     [tex]\sigma = n * n^{\frac{1}{3} } q[/tex]

     [tex]\sigma = n^{\frac{2}{3} } q[/tex]

Q&A Education