(a) According to the Ministry of Health, the height of Guinean travellers who were quarantined in Tamale for the novel coronavirus were normally distributed about a mean of 160cm and a standard deviation of 8cm. Find the probability that a traveller selected at random has (a) Height between 148cm and 175cm (b) Height above 164cm (c) Height below 179cm

Respuesta :

Answer:

a) [tex]P(148<X<175)=P(\frac{148-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{175-\mu}{\sigma})=P(\frac{148-160}{8}<Z<\frac{175-160}{8})=P(-1.5<z<1.875)[/tex]

[tex]P(-1.5<z<1.875)=P(z<1.875)-P(z<-1.5)= 0.970-0.0668= 0.9032[/tex]

b) [tex]P(X>164)=P(\frac{X-\mu}{\sigma}>\frac{164-\mu}{\sigma})=P(Z>\frac{164-160}{8})=P(z>0.5)[/tex]

[tex]P(z>0.5)=1-P(z<0.5)= 1-0.691= 0.309[/tex]

c) [tex]P(X<179)=P(\frac{X-\mu}{\sigma}<\frac{179-\mu}{\sigma})=P(Z<\frac{179-160}{8})=P(z<2.375)[/tex]

[tex]P(z<2.375)= 0.991[/tex]

Step-by-step explanation:

Let X the random variable that represent the heights of Guinean travels , and for this case we know the distribution for X is given by:

[tex]X \sim N(160,8)[/tex]  

Where [tex]\mu=160[/tex] and [tex]\sigma=8[/tex]

Part a

We are interested on this probability

[tex]P(148<X<175)[/tex]

We can ue the z score formula given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

Using this formula we got:

[tex]P(148<X<175)=P(\frac{148-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{175-\mu}{\sigma})=P(\frac{148-160}{8}<Z<\frac{175-160}{8})=P(-1.5<z<1.875)[/tex]

And we can find this probability with this difference using the normal standard distribution or excel:

[tex]P(-1.5<z<1.875)=P(z<1.875)-P(z<-1.5)= 0.970-0.0668= 0.9032[/tex]

Part b

[tex]P(X>164)=P(\frac{X-\mu}{\sigma}>\frac{164-\mu}{\sigma})=P(Z>\frac{164-160}{8})=P(z>0.5)[/tex]

And we can find this probability with this difference using the normal standard distribution or excel:

[tex]P(z>0.5)=1-P(z<0.5)= 1-0.691= 0.309[/tex]

Part c

[tex]P(X<179)=P(\frac{X-\mu}{\sigma}<\frac{179-\mu}{\sigma})=P(Z<\frac{179-160}{8})=P(z<2.375)[/tex]

And we can find this probability with this difference using the normal standard distribution or excel:

[tex]P(z<2.375)= 0.991[/tex]

Q&A Education