Respuesta :
Answer:
258 cm
Step-by-step explanation:
Given:
Distance from the base of the pole to the base of a tent guy line is [tex]2\frac{1}{2}[/tex]
Length of a tent guy line is 359 cm
To find: Height of the upright tent pole
Solution:
Let AB denotes the pole and AC denotes a tent guy line.
According to Pythagoras theorem, in a right angled triangle, square of hypotenuse is equal to sum of squares of other two sides.
[tex]AC^2=AB^2+BC^2[/tex]
[tex]AC=359 cm\\AB=x\\BC=2\frac{1}{2}\,m=\frac{5}{2}\,m=\frac{5}{2}\times 100=250\,cm[/tex]
Therefore,
[tex](359)^2=x^2+(250)^2\\128881=x^2+62500\\128881-62500=x^2\\66381=x^2\\x=257.6\,cm\approx 258\,cm[/tex]