Eric’s average income for the first 4 months of the year is $1,450.25, what must be his

average income for the remaining 8 months so that his average income for the year is

$1,780.75?​

Respuesta :

Answer:[tex]\$1946[/tex]

Step-by-step explanation:

Given

Eric average income for four months is [tex]S_1=\$1450.25[/tex]

average Annual income [tex]S=\$1780.75[/tex]

Average income [tex]=\dfrac{\text{Total salary}}{\text{Time }}[/tex]

Sum of 4 month salary [tex]=4\times S_1[/tex]

Sum of 4 month salary [tex]=\$5801[/tex]

Average salary of remaining 8 months[tex]=S_2[/tex]

Sum of last 8 months salary[tex]=8\times S_2[/tex]

So average Salary [tex]S=\dfrac{4\times S_1+8\times S_2}{12}[/tex]

[tex]\Rightarrow 1780.75=\dfrac{4\times 1450.25+8\times S_2}{12}[/tex]

[tex]\Rightarrow 21,369=5801+8\times S_2[/tex]

[tex]\Rightarrow 15,568=8\times S_2[/tex]

[tex]\Rightarrow S_2=\dfrac{15,568}{8}=\$1946[/tex]

So, average salary of remaining 8 months is [tex]\$1946[/tex]

Q&A Education