Respuesta :
Answer:
[tex]x=-8[/tex]
Step-by-step explanation:
[tex]6\left(x-1\right)=9\left(x+2\right)\\\mathrm{Expand\:}6\left(x-1\right):\quad 6x-6\\6\left(x-1\right)\\\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac\\a=6,\:b=x,\:c=1\\=6x-6\cdot \:1\\\mathrm{Expand\:}9\left(x+2\right):\quad 9x+18\\9\left(x+2\right)\\\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac\\a=9,\:b=x,\:c=2\\=9x+9\cdot \:2\\\mathrm{Multiply\:the\:numbers:}\:9\cdot \:2=18\\=9x+18\\6x-6=9x+18\\\mathrm{Add\:}6\mathrm{\:to\:both\:sides}[/tex]
[tex]6x-6+6=9x+18+6\\Simplify\\6x=9x+24\\\mathrm{Subtract\:}9x\mathrm{\:from\:both\:sides}\\6x-9x=9x+24-9x\\Simplify\\-3x=24\\\mathrm{Divide\:both\:sides\:by\:}-3\\\frac{-3x}{-3}=\frac{24}{-3}\\Simplify\\\frac{-3x}{-3}=\frac{24}{-3}\\\mathrm{Simplify\:}\frac{-3x}{-3}:\quad x\\\frac{-3x}{-3}\\\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{-b}=\frac{a}{b}\\=\frac{3x}{3}\\\mathrm{Divide\:the\:numbers:}\:\frac{3}{3}=1\\=x\\\mathrm{Simplify\:}\frac{24}{-3}:\quad -8\\\frac{24}{-3}[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{-b}=-\frac{a}{b}\\=-\frac{24}{3}\\\mathrm{Divide\:the\:numbers:}\:\frac{24}{3}=8\\=-8\\[/tex]
Answer:
x=-8
Step-by-step explanation:
6(x-1)= 9(x+2)
6x-6= 9x+18
6x-9x= 18+6
-3x= 24
-3x÷-3= 24÷-3
x=-8