What is the measure of arc WXY
Answer:
152°
Step-by-step explanation:
Let P be any point on tangent [tex] \overleftrightarrow{YZ} [/tex] and WY is secant or chord of the [tex] \odot J[/tex] .
[tex] \therefore m\angle WYZ + m\angle WYP = 180°\\(Straight \: line \: \angle 's) \\
\therefore 104° + m\angle WYP = 180°\\
\therefore m\angle WYP = 180°- 104° \\
\red{\boxed {\bold {\therefore m\angle WYP = 76°}}} \\[/tex]
NOW, by tangent secant theorem:
[tex] m\angle WYP =\frac{1}{2}\times m(\widehat{WXY}) \\\\
76°=\frac{1}{2}\times m( \widehat{WXY}) \\\\
76°\times 2 =m( \widehat{WXY}) \\
\huge \purple {\boxed {\therefore m(\widehat{WXY}) = 152°}} [/tex]