Respuesta :

Answer:

152°

Step-by-step explanation:

Let P be any point on tangent [tex] \overleftrightarrow{YZ} [/tex] and WY is secant or chord of the [tex] \odot J[/tex] .

[tex] \therefore m\angle WYZ + m\angle WYP = 180°\\(Straight \: line \: \angle 's) \\

\therefore 104° + m\angle WYP = 180°\\

\therefore m\angle WYP = 180°- 104° \\

\red{\boxed {\bold {\therefore m\angle WYP = 76°}}} \\[/tex]

NOW, by tangent secant theorem:

[tex] m\angle WYP =\frac{1}{2}\times m(\widehat{WXY}) \\\\

76°=\frac{1}{2}\times m( \widehat{WXY}) \\\\

76°\times 2 =m( \widehat{WXY}) \\

\huge \purple {\boxed {\therefore m(\widehat{WXY}) = 152°}} [/tex]

Q&A Education