Respuesta :

Answer: The value of m is 29.

Step-by-step explanation:

Given that, One term of [tex](x+y)^m[/tex] is [tex]31,824x^{18}y^{11}[/tex]  ...(i)

We know that that (r+1)th term in [tex](a+b)^n[/tex] is given by :-

[tex]T_{r+1}=^nC_ra^{n-r}b^r[/tex]  ...(ii)

On comparing (i) with (ii) , we get

[tex]a= x \text{ and } b= y \\n-r =18 \text{ and } r=11\\n=m[/tex]

i.e.

[tex]m-r=18\Rightarow\ m-11=18\\\\\Rightarrow\ m=18+11=29[/tex]

Hence, the value of m is 29.

Q&A Education