Answer:
[tex]g(x)=-(x-5)^2+4\\=-(x-7)(x-3)[/tex]
Step-by-step explanation:
Given: coordinate grid
To find: the missing number
Solution:
Equation of the parabola that open downwards and is symmetric about y-axis is [tex](x-h)^2=-4p(y-k)[/tex] where [tex](h,k)[/tex] denotes the vertex and focus is at [tex](h,k+p)[/tex]
[tex]g(x)=-(x-.....\,\,\,\,)^2+\left ( ....... \right )\\(x-.....\,\,\,\,)^2=-\left ( g(x)-(....) \right )[/tex]
[tex](x-h)^2=-\left ( g(x)-(k) \right )[/tex]
From the graph, vertex is [tex](5,4)[/tex]. Put [tex](h,k)=(5,4)[/tex]
[tex]g(x)=-(x-5)^2+4\\=-\left [ (x-5)^2-2^2 \right ][/tex]
Use formula [tex]a^2-b^2=(a+b)(a-b)[/tex]
So,
[tex]g(x)=-\left [ (x-5)^2-2^2 \right ]\\=-\left [ (x-5-2)(x-5+2) \right ]\\=-(x-7)(x-3)[/tex]