Es 18 de junio de 1815, las tropas napoleónicas se encuentran justo adelante, tu eres el ingeniero en balística y el general Wellington te pide que dispares los cañones hacia el objetivo que se encuentra a 1.2 Km, si las balas salen a una velocidad inicial de 600 m/s ¿cuál será el ángulo de disparo de los cañones? ¿en dónde te encuentras?

Respuesta :

znk

Answer:

89.1° or -1.4°  

Step-by-step explanation:

1. Location:

You are on the Mont-Saint-Jean escarpment, near the Belgian town of Waterloo.

The French troops are about 50 m below you and 1.2 km distant.

2. Finding the firing angle

Data:

R = 1200 m

u = 600 m/s

h = -50 m (the height of the target)

a = 9.8 m/s²

We have two conditions.

Horizontal distance

(1) 1200 = 600t cosθ

Vertical distance

(2) -50 = 600t sinθ - 4.9t²

Divide each side of (1) by 600cosθ.

[tex](3) \, t =\dfrac{2}{\cos \theta}[/tex]

Substitute (3) into (2)

[tex]-50 = 600t \sin \theta - 4.9t^{2} = 600 \left( \dfrac{2}{\cos \theta} \right ) \sin \theta - 4.9 \left( \dfrac{2}{\cos \theta} \right )^{2}\\\\(4) \, -50 = 1200 \tan \theta - \dfrac{19.6}{\cos^{2} \theta}[/tex]

Recall that

(5) sec²θ = 1/cos²θ = tan²θ + 1

Substitute (5) into (4)

[tex]-50 = 1200 \tan \theta - 19.6 \left(\tan^{2} \theta}+ 1\right )[/tex]

Set up a quadratic equation

[tex]\begin{array}{rcl}-50 & = & 1200 \tan \theta - 19.6\tan^{2} \theta -19.6 \\0 & = & 1200 \tan \theta - 19.6\tan^{2} \theta + 30.4\\0 & =&19.6\tan^{2} \theta - 1200 \tan \theta - 30.4\\0 & =&\tan^{2} \theta - 61.224 \tan \theta - 1.551\\\end{array}[/tex]

Solve for θ

Use the quadratic formula.

tanθ = 61.249 or -0.025

θ = arctan(61.249) = 89.1° or

θ = arctan(-0.025) = -1.4°

Q&A Education