Which expression is equivalent to [tex]\sqrt128x^{8} y^{3} z^{9}[/tex]? Assume [tex]y\geq 0[/tex] and [tex]z\geq 0[/tex].

A - [tex]2x^{2} z^{2} \sqrt8y^{3} z[/tex]

B - [tex]4x^{2} yz^{3}\sqrt 2x^{2}[/tex]

C - [tex]8x^{4} yz^{4} \sqrt2yz[/tex]

D - [tex]64x^{4}yz^{4} \sqrt2yz[/tex]

Respuesta :

Answer:

[tex](C)8x^4z^4\sqrt{2yz}[/tex]

Step-by-step explanation:

We want to determine an expression equivalent to: [tex]\sqrt{128x^8y^3z^9}[/tex]

[tex]\sqrt{ab} =\sqrt{a}*\sqrt{b}[/tex]

Therefore:

[tex]\sqrt{128x^8y^3z^9}=\sqrt{128}*\sqrt{x^8}*\sqrt{y^3}*\sqrt{z^9}[/tex]

[tex]=\sqrt{64*2}*\sqrt{x^{4*2}}*\sqrt{y^{2+1}}*\sqrt{z^{8+1}}\\=8\sqrt{2}*\sqrt{x^{4*2}}*\sqrt{y^2*y}*\sqrt{z^{8}*z}}[/tex]

[tex]=8\sqrt{2}*x^4*y \sqrt{y}*z^4\sqrt{z}\\=8*x^4*z^4*\sqrt{2}*\sqrt{y}*\sqrt{z}\\=8x^4z^4\sqrt{2yz}[/tex]

Answer:

C on edge2020.

Step-by-step explanation:

Trust me on this one.

:D

Q&A Education