Find the area of the rectangle polynomial
hello,
[tex]Area =(2x + 4) \times ( 4x - 2) \\ Area =8 {x}^{2} - 4x + 16x - 8 \\ Area = {8x}^{2} + 12x - 8[/tex]
[tex]\boxed{crsjr}[/tex]
Answer:
[tex]\Longrightarrow: \boxed{\sf{8x^2+12x-8}}[/tex]
Step-by-step explanation:
Using the distributive property, you multiply by the area to find the area of the rectangle polynomial.
[tex]: \Longrightarrow \sf{(Area)= (2x+4)*(4x-2)}[/tex]
Solve.
Multiply by expand.
Use the distributive property.
Use the FOIL method.
FOIL method:
[tex]\Longrightarrow: \sf{\left(A+B\right)\left(C+D\right)=AC+AD+BC+BD}[/tex]
[tex]\Longrightarrow: \sf{2x\cdot \:4x+2x\left(-2\right)+4\cdot \:4x+4\left(-2\right)}[/tex]
[tex]\Longrightarrow: \boxed{\sf{=8x^2+12x-8}}[/tex]
I hope this helps! Let me know if you have any questions.