g Two cars, car 1 and car 2 are traveling in opposite directions, car 1 with a magnitude of velocity v1=13.0 m/s and car 2 v2= 7.22 m/s. If car 1’s exhaust system is loud enough to be heard by car 2 and the frequency fe produced from the exhaust is 2.10 kHz. What frequencies would be heard by car 2 when the cars are approaching, passing, and retreating from one another?

Respuesta :

Answer:

When they are approaching each other

    [tex]f_a = 2228.7 \ Hz[/tex]

When they are passing  each other

    [tex]f_a = 2100Hz[/tex]

 When they are retreating  from each other

     [tex]f_a = 1980.7 Hz[/tex]

Explanation:

From the question we are told that

     The velocity of car one is  [tex]v_1 = 13.0 m/s[/tex]

      The velocity of car two is  [tex]v_2 = 7.22 m/s[/tex]

     The frequency of sound from car one is  [tex]f_e = 2.10 kHz[/tex]

Generally the speed of sound at normal temperature is  [tex]v = 343 m/s[/tex]

  Now as the cars move relative to each other doppler effect is created and this  can be represented  mathematically  as

              [tex]f_a = f_o [\frac{v \pm v_o}{v \pm v_s} ][/tex]

Where [tex]v_s[/tex] is the velocity of the source of sound

            [tex]v_o[/tex] is the velocity of the observer of the sound

            [tex]f_o[/tex] is the actual frequence

             [tex]f_a[/tex]  is the apparent frequency

Considering the case when they are approaching each other

        [tex]f_a = f_o [\frac{v + v_o}{v - v_s} ][/tex]

          [tex]v_o = v_2[/tex]  

         [tex]v_s = v_1[/tex]

         [tex]f_o = f_e[/tex]

Substituting value

            [tex]f_a = 2100 [\frac{343 + 7.22}{ 343 - 13} ][/tex]

              [tex]f_a = 2228.7 \ Hz[/tex]

Considering the case when they are passing  each other    

At that instant

                  [tex]v_o = v_s = 0m/s[/tex]

                   [tex]f_o = f_e[/tex]

               [tex]f_a = f_o [\frac{v }{v } ][/tex]

              [tex]f_a = f_o[/tex]

Substituting value

             [tex]f_a = 2100Hz[/tex]

Considering the case when they are retreating  from each other    

                [tex]f_a = f_o [\frac{v - v_o}{v + v_s} ][/tex]

          [tex]v_o = v_2[/tex]  

         [tex]v_s = v_1[/tex]

         [tex]f_o = f_e[/tex]      

Substituting value

         [tex]f_a = 2100 [\frac{343 - 7.22}{343 + 13} ][/tex]    

          [tex]f_a = 1980.7 Hz[/tex]    

Q&A Education