Answer:
n = 1.4266
Explanation:
Given that:
refractive index of crystalline slab n = 1.665
let refractive index of fluid is n.
angle of incidence θâ = 37.0°
Critical angle [tex]\theta _c = sin^{-1} (\frac{n}{n_{slab}} )[/tex]
[tex]sin \theta _ c =\frac{n}{n_{slab}}[/tex]
According to Snell's law of refraction:
[tex]n sin \theta _1 = n_{slab} \ sin \ (90- \theta_c)[/tex]
At point P ; [tex]90 - \theta _2 \leq \theta _c[/tex]
[tex]\theta _2 = 90 - \theta _c[/tex]
Therefore:
[tex]n \ sin \theta_1 = n_{slab} \sqrt{(1-sin^2 \theta _c)} \\ \\ n \ sin \theta_1 = n_{slab} \sqrt{(1- \frac{n}{n_{slab}} )}[/tex]
Then maximum value of refractive index  n of the fluid is:
[tex]n = \frac{n_{slab}}{\sqrt{1+ sin^2 \theta _1 } }[/tex]
[tex]n = \frac{1.665}{\sqrt{1+ sin^2 \ 37} }[/tex]
n = 1.4266