Respuesta :

Looks like [tex]x(t)=\tan t+3t[/tex] and [tex]y(t)=\frac t{\cos t}=t\sec t[/tex].

By the chain rule,

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm dt}\dfrac{\mathrm dt}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]

We have

[tex]\dfrac{\mathrm dy}{\mathrm dt}=\sec t+t\sec t\tan t[/tex]

[tex]\dfrac{\mathrm dx}{\mathrm dt}=\sec^2t+3[/tex]

so that the derivative is

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\sec t+t\sec t\tan t}{\sec^2t+3}[/tex]

We can simplify a bit. Multiply the numerator and denominator by [tex]\cos^2t[/tex]:

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\cos t+t\sin t}{1+3\cos^2t}[/tex]

Q&A Education