A beam of alpha particles ( q = +2e, mass = 6.64 x 10-27 kg) is accelerated from rest through a potential difference of 1.8 kV. The beam is then entered into a region between two parallel metal plates with potential difference 120 V and a separation 8 mm, perpendicular to the direction of the field. What magnitude of magnetic field is needed so that the alpha particles emerge undeflected from between the plates?

Respuesta :

Answer:

The magnetic field required required for the beam not to be deflected  is [tex]B = 0.0036T[/tex]

Explanation:

From the question we are told that

    The charge on the particle is [tex]q = +2e[/tex]

    The mass of the particle is  [tex]m = 6.64 *10^{-27} kg[/tex]

    The potential difference is [tex]V_a = 1.8 kV = 1.8 *10^{3} V[/tex]

    The potential difference between the two parallel plate is  [tex]V_b = 120 V[/tex]

    The separation between the plate is  [tex]d = 8 mm = \frac{8}{1000} = 8*10^{-3}m[/tex]

   

The Kinetic energy experienced by the beam before entering the region of the parallel plate is equivalent to the potential energy of the beam  after the region having a potential difference of 1.8kV

               [tex]KE_b = PE_b[/tex]

Generelly

              [tex]KE_b = \frac{1}{2} m v^2[/tex]

And      [tex]PE_b = q V_a[/tex]

 Equating this two formulas

              [tex]\frac{1}{2} mv^2 = q V_a[/tex]

making v the subject

           [tex]v = \sqrt{\frac{q V_a}{2 m} }[/tex]

Substituting value  

           [tex]v = \sqrt{\frac{ 2* 1.602 *10^{-19} * 1.8 *10^{3}}{2 * 6.64 *10^{-27}} }[/tex]

           [tex]v = 41.65*10^4 m/s[/tex]

Generally the electric field between the plates is mathematically represented as

                 [tex]E = \frac{V_b}{d}[/tex]  

Substituting value  

                 [tex]E = \frac{120}{8*10^{-3}}[/tex]              

                [tex]E = 15 *10^3 NC^{-1}[/tex]

the magnetic field  is mathematically evaluate    

                     [tex]B = \frac{E}{v}[/tex]

                   [tex]B = \frac{15 *10^{3}}{41.65 *10^4}[/tex]

                    [tex]B = 0.0036T[/tex]

Q&A Education