Answer:[tex]P_{bulb}=99.11\ kPa[/tex]
Explanation:
Given
When the bulb is squeezed then liquid level rises to height h i.e. pressure decreases inside the bulb which causes rises in the tube
for common elevation i.e. at liquid level pressure must be equal therefore
[tex]P_{bulb}+\rho gh=P_{atm}[/tex]
[tex]P_{bulb}=1.013\times 10^5-1490\times 9.8\times h[/tex]
for [tex]h=0.15\ m[/tex]
[tex]P_{bulb}=1.013\times 10^5-1490\times 9.8\times 0.15[/tex]
[tex]P_{bulb}=101.3\times 10^3-2.1903\times 10^3[/tex]
[tex]P_{bulb}=99.11\ kPa[/tex]
for [tex]h=0.1\ m[/tex]
[tex]P_{bulb}=101.3\times 10^3-1.4602\times 10^3[/tex]
[tex]P_{bulb}=99.83\ kPa[/tex]