Respuesta :

Answer:

[tex]\frac{\sqrt{6}+\sqrt{2} }{4}[/tex]

Step-by-step explanation:

Using the difference formula for cosine and the exact values

cos45° = sin45° = [tex]\frac{\sqrt{2} }{2}[/tex], cos30° = [tex]\frac{\sqrt{3} }{2}[/tex], sin30° = [tex]\frac{1}{2}[/tex]

cos(a - b) = cosacosb + sinasinb

Note 15° = 45° - 30°, thus

cos15°

= cos(45 - 30)°

= cos45°cos30° + sin45°sin30°

= ([tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] ) + ([tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{1}{2}[/tex] )

= [tex]\frac{\sqrt{6} }{4}[/tex] + [tex]\frac{\sqrt{2} }{4}[/tex]

= [tex]\frac{\sqrt{6}+\sqrt{2} }{4}[/tex]

Answer:

[tex]\frac{\sqrt{6} +\sqrt{2} }{4}[/tex]

Step-by-step explanation:

Q&A Education