Respuesta :

Answer:

Step-by-step explanation:

slant height l = 14cm

r = 6 cm

Use Pythagorean theorem.

h² + 6² = 14²

h² + 36 = 196

h² = 196 - 36

h² = 160

h = √160

h = 12.65 cm

[tex]Volume=\frac{1}{3}\pi r^{2}h\\\\=\frac{1}{3}*3.14*6*6*12.64\\\\[/tex]

= 476.61 cubic cm

Answer:

The volume of cone is 476.61 cm³.

Step-by-step explanation:

Solution :

As per given question we have provided :

  • [tex]\green\star[/tex] Slant height = 14 cm
  • [tex]\green\star[/tex] Radius = 6 cm

[tex]\begin{gathered}\end{gathered}[/tex]

Firstly, finding the height of cone by substituting the values in the formula :

[tex]{\longrightarrow{\pmb{\sf{l = \sqrt{(r)^{2} + {(h)}^{2} }}}}}[/tex]

  • [tex]\orange\star[/tex] Slant height (l) = 14 cm
  • [tex]\orange\star[/tex] Radius (r) = 6 cm
  • [tex]\orange\star[/tex] Height (h) = ?

Substituting all the given values in the formula to find the height of cone :

[tex]\begin{gathered}\begin{array}{l}\quad{\longrightarrow{\sf{l = \sqrt{(r)^{2} + {(h)}^{2}}}}}\\\\\quad{\longrightarrow{\sf{{(l)}^{2} =(r)^{2} + {(h)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(14)}^{2} =(6)^{2} + {(h)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(14 \times 14)} =(6 \times 6) + {(h)}^{2}}}}\\\\\quad{\longrightarrow{\sf{{(196)} =(36) + {(h)}^{2}}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^{2} = 196 - 36}}}\\\\\quad{\longrightarrow{\sf{ {(h)}^{2} = 160}}}\\\\\quad{\longrightarrow{\sf{h = \sqrt{160}}}}\\\\\quad{\longrightarrow{\sf{h = 12.65}}}\\\\\quad{\star{\underline{\boxed{\sf{\purple{h = 12.65}}}}}} \end{array}\end{gathered}[/tex]

Hence, the height of cone is 12.65 cm.

[tex]\begin{gathered}\end{gathered}[/tex]

Now, finding the volume of cone by substituting the values in the formula :

[tex]\longrightarrow{\pmb{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}[/tex]

  • [tex]\orange\star[/tex] V = Volume
  • [tex]\orange\star[/tex] π = 3.14
  • [tex]\orange\star[/tex] r = radius
  • [tex]\orange\star[/tex] h = height

Substituting all the given values in the formula to find the volume of cone :

[tex]\begin{gathered}\begin{array}{l}\quad\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}\\\\\quad\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(6)}^{2} 12.65}}\\\\\quad\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(6 \times 6)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(36)}12.65}}\\\\\quad\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{\cancel{3}}\times 3.14 \times \cancel{36}\times 12.65}}\\\\\quad\longrightarrow{\sf{Volume_{(Cone)} = 3.14 \times 12 \times 12.65}}\\ \\\quad\longrightarrow{\sf{Volume_{(Cone)} = 476.61 \: {cm}^{3}}}\\\\\quad\star{\underline{\boxed{\sf{\pink{Volume_{(Cone)} = 476.61 \: {cm}^{3}}}}}}\end{array}\end{gathered}[/tex]

Hence, the volume of cone is 476.61 cm³.

[tex]\rule{300}{2.5}[/tex]

Q&A Education