Respuesta :
Answer:
a)-1.014x [tex]10^{-7[/tex]J
b)3.296 x [tex]10^{-7[/tex]J
Explanation:
For Sphere A:
mass 'Ma'= 47kg
xa= 0
For sphere B:
mass 'Mb'= 110kg
xb=3.4m
a)the gravitational potential energy is given by
[tex]U_{i[/tex] = -GMaMb/ d
[tex]U_{i[/tex]= - 6.67 x [tex]10^{-11}[/tex] x 47 x 110/ 3.4 => -1.014x [tex]10^{-7[/tex]J
b) at d= 0.8m (3.4-2.6) and [tex]U_{i[/tex]=-1.014x [tex]10^{-7[/tex]J
The sum of potential and kinetic energies must be conserved as the energy is conserved.
[tex]K_{i[/tex] + [tex]U_{i[/tex]= [tex]K_{f[/tex] + [tex]U_{f[/tex]
As sphere starts from rest and sphere A is fixed at its place, therefore [tex]K_{i[/tex] is zero
[tex]U_{i[/tex]= [tex]K_{f[/tex] + [tex]U_{f[/tex]
The final potential energy is
[tex]U_{f[/tex]= - GMaMb/d
Solving for '[tex]K_{f[/tex] '
[tex]K_{f[/tex] = [tex]U_{i[/tex] + GMaMb/d => -1.014x [tex]10^{-7[/tex] + 6.67 x [tex]10^{-11}[/tex] x 47 x 110/ 0.8
[tex]K_{f[/tex] = 3.296 x [tex]10^{-7[/tex]J