Respuesta :
Answer:8.9cm
Step-by-step explanation:
by Pythagoras rule we have :
Length of diagonal=√(8^2+4^2)
Length=√(8x8+4x4)
Length of diagonal=√(64+16)
Length of diagonal=√(80)
Length of diagonal=8.9
The approximate length of the diagonal of the rectangle to the nearest tenth will be 8.9 cm.
What is a rectangle?
It is a polygon that has four sides. The sum of the internal angle is 360 degrees. In a rectangle, opposite sides are parallel and equal and each angle is 90 degrees. And its diagonals are also equal and intersect at the mid-point.
The length and width of the rectangle are 8 cm and 4 cm.
Then the approximate length of the diagonal of the rectangle to the nearest tenth will be
We know that the Pythagoras theorem
[tex]D = \sqrt{4^2 + 8^2}\\\\D = \sqrt{16+64}\\\\D = \sqrt{80}\\\\D = 8.9\ cm[/tex]
More about the rectangle link is given below.
https://brainly.com/question/10046743