5logx + logy
Condense fully
Answer:
log ([tex]\frac{x^{5} }{y^{5} }[/tex])
Step-by-step explanation:
Use the quotient property of logarithms, [tex]logb[/tex] ([tex]x[/tex]) [tex]- logb[/tex] ([tex]y[/tex]) = [tex]logb \frac{x}{y}[/tex]
[tex]5log (\frac{x}{y} )[/tex]
Simplify 5 log [tex](\frac{x}{y} )[/tex] by moving 5 inside the logarithm.
log [tex]((\frac{x}{y} )^{5} )[/tex]
Apply the product rule to [tex]\frac{x}{y}[/tex]
log [tex](\frac{x^{5} }{y^{5} } )[/tex]