A 14 lb bowling ball is thrown onto a lane with a backspin angular speed of 10 rad/s and forward velocity of 25 ft/s. After a few seconds, the ball starts rolling without slip and forward velocity of 17.2 ft/s and angular velocity of 48.6 rad/s. The ball has a mass moment of inertia of 0.0204 slugs-ft2. Determine the work done by friction on the ball from the initial time until when it starts rolling without slip.

Respuesta :

Answer:

[tex]W_{loss} = 47.368\,J[/tex]

Explanation:

The situation is modelled after the Principle of Energy Conservation and Work-Energy Theorem:

[tex]K_{t.1} - K_{t,2} + K_{r,1} - K_{r,2} = W_{loss}[/tex]

[tex]W_{loss}=\frac{1}{2}\cdot (0.428\,slug)\cdot \left[\left(25\,\frac{ft}{s} \right)^{2}-\left(17.2\,\frac{ft}{s} \right)^{2}\right] + \frac{1}{2}\cdot \left(0.0204\,slug\cdot ft^{2}\right)\cdot \left[\left(10\,\frac{rad}{s} \right)^{2}-\left(48.6\,\frac{ft}{s} \right)^{2}\right][/tex]

[tex]W_{loss} = 47.368\,J[/tex]

Q&A Education