Answer:
[tex]W_{loss} = 47.368\,J[/tex]
Explanation:
The situation is modelled after the Principle of Energy Conservation and Work-Energy Theorem:
[tex]K_{t.1} - K_{t,2} + K_{r,1} - K_{r,2} = W_{loss}[/tex]
[tex]W_{loss}=\frac{1}{2}\cdot (0.428\,slug)\cdot \left[\left(25\,\frac{ft}{s} \right)^{2}-\left(17.2\,\frac{ft}{s} \right)^{2}\right] + \frac{1}{2}\cdot \left(0.0204\,slug\cdot ft^{2}\right)\cdot \left[\left(10\,\frac{rad}{s} \right)^{2}-\left(48.6\,\frac{ft}{s} \right)^{2}\right][/tex]
[tex]W_{loss} = 47.368\,J[/tex]