A random sample of 77 fields of corn has a mean yield of 26.226.2 bushels per acre and standard deviation of 2.322.32 bushels per acre. Determine the 95%95% confidence interval for the true mean yield. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.

Respuesta :

Answer:

Therefore the  95% confidence interval is (25,707.480 < E < 26,744.920)

Step-by-step explanation:

n = 77

mean u = 26,226.2  bushels per acre

standard deviation s = 2,322.32

let E = true mean

let A = test statistic

Find 95% Confidence Interval

so

let  A =  (u - E) *  ([tex]\sqrt{n}[/tex]  / s)   be the test statistic

we want      P( average_l <  A  < average_u )  = 95%

look for  lower 2.5%  and the upper 97.5%  Because I think this is a 2-tail test

average_l =  -1.96  which corresponds to the 2.5%

average_u = 1.96

P(  -1.96  <  A  <  1.96)  =  95%

P(  -1.96  <  (u - E) *  ([tex]\sqrt{n}[/tex]  / s)  <  1.96)  =  95%

Solve for the true mean E ok

E   <   u + 1.96* (s  / [tex]\sqrt{n}[/tex])

from  -1.96  <  (u - E) *  ([tex]\sqrt{n}[/tex]  / s)

E < 26,226.2 +  1.96*( 2,322.32 / [tex]\sqrt{77}[/tex] )

E < 26,226.2 +  1.96*( 2,322.32 / [tex]\sqrt{77}[/tex] )

E < 26,226.2 +  518.7197348105429466

upper bound is 26,744.9197

or

u - 1.96* (s  / [tex]\sqrt{n}[/tex])  < E

26,226.2 -  518.7197348105429466  < E

25,707.48026519  < E

lower bound is 25,707.48026519

Therefore the  95% confidence interval is (25,707.480 < E < 26,744.920)

Q&A Education