Respuesta :
Answer:
a) E = 17.55 MeV
b) E = 18.99 MeV
c) E = 3.29 MeV
d) You can use the methods applied for the other parts to solve this, the equation is not properly written
e) E = 4.075 MeV
Explanation:
Energy Released, [tex]E = \triangle M * 931.5[/tex]
[tex]\triangle M = \sum M_{product} - \sum M_{reactant}[/tex]
Mass of 1H, [tex]M_{H} = 1.007823[/tex]
Mass of 2H, [tex]M_{2H} = 2.0141u[/tex]
Mass of 3H, [tex]M_{3H} = 3.016 u[/tex]
Mass of Helium, [tex]M_{4He} = 4.002602u[/tex]
Mass of Beryllium, [tex]M_{7Be} = 7.01693 u[/tex]
Mass of neutron, [tex]M_{n} = 1.008664 u[/tex]
a) [tex]2H + 3H \rightarrow 4He + n[/tex]
[tex]\triangle M = (4M_{He} + M_{n} ) - (2M_{H} + 3 M_{H} )\\\triangle M = ( 4.0026 + 1.008664) - (2.0141 + 3.016 )\\\triangle M = -0.01884u[/tex]
Energy released,
[tex]E = -0.01884 * 931.5\\E = -17.55 Mev[/tex]
Energy released = 17.55 MeV
b) [tex]4He + 4He \rightarrow 7Be + n[/tex]
[tex]\triangle M = (M_{7Be} + M_{n} ) - (M_{4He} + M_{4He} )\\\triangle M = ( 7.01693 + 1.008664) - (4.002602 + 4.002602 )\\\triangle M = 0.02039 u[/tex]
Energy released,
[tex]E = 0.02039 * 931.5\\E = 18.99 Mev[/tex]
c) [tex]2H + 2H \rightarrow 3 He[/tex] + n
[tex]\triangle M = (M_{3He} + M_{n} ) - (M_{2H} + M_{2H} )\\\triangle M = ( 3.016 + 1.008664) - (2.0141 + 2.0141 )\\\triangle M = -0.003536 u[/tex]
Energy released,
[tex]E = -0.003536 * 931.5\\E = -3.29 Mev[/tex]
E = 3.29 MeV(Energy is released)
d) You can use the methods applied for the other parts to solve this, the equation is not properly written
e) [tex]2H + 2H \rightarrow 3H + 1H[/tex]
[tex]\triangle M = (M_{3H} + M_{1H} ) - (M_{2H} + M_{2H} )\\\triangle M = ( 3.016 + 1.007825) - (2.0141 + 2.0141 )\\\triangle M = -0.00435 u[/tex]
[tex]E = -0.00435 * 931.5\\E =-4.075 Mev[/tex]
E = 4.075 MeV ( Energy is released)