The heat capacity of an object is given by the following equation: C equals 14000 straight J over straight K plus open parentheses 200 straight J over straight K squared close parentheses T plus open parentheses 3 straight J over straight K cubed close parentheses T squared What is the change in the entropy of the object (in J/K) associated with raising its temperature from 290 K to 380 K?

Respuesta :

Answer:

The change in entropy of the object is  [tex]ds = 10.89*10^{4} J/K[/tex]

Explanation:

    From the question we are told that

       The equation for the heat capacity is     [tex]C = 14000\frac{J}{K} + (200 \frac{J}{K^2} )T + [3 \frac{J}{K^3} ] T^2[/tex]

      The first temperature is  [tex]T_1 = 290 K[/tex]

      The first temperature is  [tex]T_2 = 380 K[/tex]

Generally the change in entropy is mathematically represented as

           [tex]ds = \int\limits^{T_2}_{T_1} {\frac{dQ}{T} } \,[/tex]

Where dQ is the change in the quantity of heat transferred with  time which i mathematically represented as

              [tex]Q =C dt[/tex]

Substituting this above  

            [tex]ds = \int\limits^{T_2}_{T_1} {\frac{C dt}{T} } \,[/tex]

Substituting for C  

             [tex]ds = \int\limits^{PT_2}_{T_1} {\frac{(1400 +200T +3T^2) }{T} } \, dt[/tex]

          [tex]ds = 1400\ ln [T]+ 200 \frac{T^2}{T} +3 \frac{T^2}{2 T} \ \ | \left \ T_2} \atop {T_1}} \right.[/tex]

          [tex]ds = 1400 ln [\frac{T_2}{T_1} ] + 200 (T_2 - T_1 ) + \frac{3}{2} (T_2^2 -T_1^2)[/tex]

Substituting values

         [tex]ds = 1400 ln [\frac{380}{290} ] + 200 (380 - 290 ) + \frac{3}{2} (380^2 -290 ^2)[/tex]

        [tex]ds = 10.89*10^{4} J/K[/tex]

Q&A Education