13–86 A radiation shield that has the same emissivity e3 on both sides is placed between two large parallel plates, which are maintained at uniform temperatures of T1 5 650 K and T2 5 400 K and have emissivities of e1 5 0.6 and e2 5 0.9, respectively. Determine the emissivity of the radiation shield if the radiation heat transfer between the plates is to be reduced to 15 percent of that without the radiation shield.

Respuesta :

Answer:

The emissivity of the radiation shield is  [tex]e_3 = 0.580[/tex]  

Explanation:

From the question we are told that

   The temperature of the first parallel plate is  [tex]T_1 = 650K[/tex]

    The temperature of the second  parallel plate is  [tex]T_2 = 400K[/tex]

    The  emissivity of first plate is  [tex]e_1 = 0.6[/tex]

    The  emissivity of first plate is  [tex]e_2 = 0.9[/tex]

Generally the total radiation heat that is been transferred without the shield is mathematically represented as

              [tex]Q_1 = \frac{\sigma (T_1 ^4 - T_2 ^4)}{\frac{1}{e1 } + \frac{1}{e_2} -1 }[/tex]

Where  [tex]\sigma[/tex] is the Stefan-Boltzmann constant which has a value  [tex]5.67 *10^{-8} \ W \cdot m^{-2} \cdot K^{-1}[/tex]

Substituting values

              [tex]Q_1 = \frac{ 5.67 *10^{-8} (650 ^4 - 400 ^4)}{\frac{1}{0.6 } + \frac{1}{0.9} -1 }[/tex]

              [tex]Q_1 = 4876.8 \ W/m^2[/tex]

From the question we are told the that using the radiation shield would reduce the radiation heat transfer by 15%

  So the new heat transfer is

         [tex]Q_2 = \frac{15}{100} * Q_1[/tex]

 So     [tex]Q_2 = \frac{15}{100} * 4876.8[/tex]

           [tex]Q_2 = 731.52 W/m^2[/tex]

Now this new radiation heat transfer can be mathematically represented as  

          [tex]Q_2 = \frac{\sigma (T_1 ^4 - T_2 ^4)}{ [\frac{1}{e_1 } + \frac{1}{e_2 } - 1 ] + n [\frac{1}{e_3} + \frac{1}{e_3} -1 ]}[/tex]

   Where [tex]e_3[/tex] the emissivity of the  radiation shield and n is the number of radiation shield

Substituting values

      [tex]731.52 = \frac{5.67 *10^{-8} (650 ^4 - 400 ^4)}{ [\frac{1}{0.6} + \frac{1}{0.9 } - 1 ] + 1 [\frac{1}{e_3} + \frac{1}{e_3} -1 ]}[/tex]

      [tex]731.52 = \frac{1.4175*10^{-5}}{ [\frac{1}{0.6} + \frac{1}{0.9 } - 1 ] + 1 [\frac{1}{e_3} + \frac{1}{e_3} -1 ]}[/tex]

    [tex][\frac{1}{0.6} + \frac{1}{0.9 } - 1 ] + 1 [\frac{1}{e_3} + \frac{1}{e_3} -1 ] = \frac{1.4175*10^{-5}}{731.52}[/tex]

     [tex][\frac{1}{0.6} + \frac{1}{0.9 } - 1 ] + 1 [\frac{1}{e_3} + \frac{1}{e_3} -1 ] = 1.9377*10^{-8}[/tex]

     [tex]1 [\frac{1}{e_3} + \frac{1}{e_3} -1 ] = 1.9377*10^{-8} - [\frac{1}{0.6} + \frac{1}{0.9 } - 1 ][/tex]

     [tex]\frac{1}{e_3} + \frac{1}{e_3} = 1 .7222222416[/tex]

     [tex]e_3 = 0.580[/tex]                

Q&A Education