Respuesta :
Answer:
[tex](a)L(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x+\frac{\pi}{4})\\(b)Q(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x+\frac{\pi}{4})+\frac{\sqrt{2} }{4}(x+\frac{\pi}{4})^2\\(c)L(-0.23\pi)=-0.6626\\Q(-0.23\pi)=-0.6613[/tex]
Step-by-step explanation:
Given the function:
[tex]f(x)=sin x, a=-\frac{\pi}{4}[/tex]
(a)Linear approximating polynomial
[tex]L(x)=f(a)+f'(a)(x-a)\\f(a)=sin(-\frac{\pi}{4})=-\frac{\sqrt{2} }{2}\\f'(x)=cos x, a=-\frac{\pi}{4}\\f'(a)=cos (-\frac{\pi}{4})=\frac{\sqrt{2} }{2} \\Therefore:\\L(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x-(-\frac{\pi}{4}))\\L(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x+\frac{\pi}{4})[/tex]
(b)Quadratic approximating polynomial
[tex]Q(x)=L(x)+\frac{1}{2}f''(a)(x-a)^2\\f''(x)=-sin(x), \\f''(a)=-sin(-\frac{\pi}{4})=\frac{\sqrt{2} }{2}\\Q(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x+\frac{\pi}{4})+\frac{\sqrt{2} }{4}(x+\frac{\pi}{4})^2[/tex]
(c)When [tex]x=-0.23\pi[/tex]
Using Linear Approximation polynomial
[tex]L(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x+\frac{\pi}{4})\\L(-0.23\pi)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(-0.23\pi+\frac{\pi}{4})\\L(-0.23\pi)=-0.6626[/tex]
Using the Quadratic approximating polynomial
[tex]Q(x)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(x+\frac{\pi}{4})+\frac{\sqrt{2} }{4}(x+\frac{\pi}{4})^2\\Q(-0.23\pi)=-\frac{\sqrt{2} }{2}+\frac{\sqrt{2} }{2}(-0.23\pi+\frac{\pi}{4})+\frac{\sqrt{2} }{4}(-0.23\pi+\frac{\pi}{4})^2=-0.6613[/tex]