A simple random sample of size nequals81 is obtained from a population with mu equals 83 and sigma equals 27. ​(a) Describe the sampling distribution of x overbar. ​(b) What is Upper P (x overbar greater than 89 )​? ​(c) What is Upper P (x overbar less than or equals 75.65 )​? ​(d) What is Upper P (79.4 less than x overbar less than 89.3 )​?

Respuesta :

Answer:

a) [tex] \bar X \sim N (\mu, \frac{\sigma}{\sqrt{n}})[/tex]

With:

[tex]\mu_{\bar X}= 83[/tex]

[tex]\sigma_{\bar X}=\frac{27}{\sqrt{81}}= 3[/tex]

b) [tex] z= \frac{89-83}{\frac{27}{\sqrt{81}}}= 2[/tex]

[tex] P(Z>2) = 1-P(Z<2)= 1-0.97725= 0.02275[/tex]

c) [tex] z= \frac{75.65-83}{\frac{27}{\sqrt{81}}}= -2.45[/tex]

[tex] P(Z<-2.45) =0.0071[/tex]

d) [tex] z= \frac{89.3-83}{\frac{27}{\sqrt{81}}}= 2.1[/tex]

[tex] z= \frac{79.4-83}{\frac{27}{\sqrt{81}}}= -1.2[/tex]

[tex] P(-1.2<Z<2.1)= P(Z<2.1) -P(z<-1.2) = 0.982-0.115= 0.867[/tex]

Step-by-step explanation:

For this case we know the following propoertis for the random variable X

[tex]\mu = 83, \sigma = 27[/tex]

We select a sample size of n = 81

Part a

Since the sample size is large enough we can use the central limit distribution and the distribution for the sampel mean on this case would be:

[tex] \bar X \sim N (\mu, \frac{\sigma}{\sqrt{n}})[/tex]

With:

[tex]\mu_{\bar X}= 83[/tex]

[tex]\sigma_{\bar X}=\frac{27}{\sqrt{81}}= 3[/tex]

Part b

We want this probability:

[tex]P(\bar X>89)[/tex]

We can use the z score formula given by:

[tex]z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 89 we got:

[tex] z= \frac{89-83}{\frac{27}{\sqrt{81}}}= 2[/tex]

[tex] P(Z>2) = 1-P(Z<2)= 1-0.97725= 0.02275[/tex]

Part c

[tex]P(\bar X<75.65)[/tex]

We can use the z score formula given by:

[tex]z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 75.65 we got:

[tex] z= \frac{75.65-83}{\frac{27}{\sqrt{81}}}= -2.45[/tex]

[tex] P(Z<-2.45) =0.0071[/tex]

Part d

We want this probability:

[tex] P(79.4 < \bar X < 89.3)[/tex]

We find the z scores:

[tex] z= \frac{89.3-83}{\frac{27}{\sqrt{81}}}= 2.1[/tex]

[tex] z= \frac{79.4-83}{\frac{27}{\sqrt{81}}}= -1.2[/tex]

[tex] P(-1.2<Z<2.1)= P(Z<2.1) -P(z<-1.2) = 0.982-0.115= 0.867[/tex]

Q&A Education