Answer:
[tex]P_{f}[/tex] =(5.7 x [tex]10^{7[/tex] i - 2.24 x [tex]10^{7[/tex] j) kgm/s
Explanation:
Due to earths gravity, force on asteroid is given by:
[tex]F= \frac{Gm_{1}m_{2} }{r^{2} }[/tex] r^
Plugging in the values, we have
F= [(6.67x[tex]10^{-11}[/tex])(1500)(5.97 x [tex]10^{24}[/tex])(8x[tex]10^{6}[/tex]i + 9x[tex]10^{6[/tex] j)] / ((8x[tex]10^{6}[/tex])² + (9x[tex]10^{6[/tex] )²[tex])^{1.5}[/tex]
F= 2736 i^ + 3078 j^
In order find the final momentum of the Asteroid, apply impulse momentum theorem
[tex]P_{f}[/tex] = [tex]P_{i[/tex] + FΔt
[tex]P_{f}[/tex] = 1500(3.5 x [tex]10^{4[/tex] i - 1.8x[tex]10^{4[/tex] j) + (2736i + 3078j)(1.5x[tex]10^{3[/tex])
[tex]P_{f}[/tex] =(5.7 x [tex]10^{7[/tex] Â i- 2.24 x [tex]10^{7[/tex] j)kgm/s