Answer:
[tex](820-760) -1.99 \sqrt{\frac{160^2}{40}+ \frac{240^2}{40}} =-30.758[/tex]
[tex](820-760) +1.99 \sqrt{\frac{160^2}{40}+ \frac{240^2}{40}} =150.758[/tex]
Step-by-step explanation:
For this case we have the following data given:
[tex]\bar X_{m}= 760[/tex] the sample mean for males
[tex]\bar X_{f}= 820[/tex] the sample mean for females
[tex]s_m = 240[/tex] deviation for males
[tex]s_f = 160[/tex] deviation for females
[tex]n_m = 40[/tex] sample size of males
[tex]n_f = 40[/tex] sample size of females
Confidence interval
The confidence interval for the true mean differences is given by:
[tex] (\bar_{f} -\bar_m) \pm t_{\alpha/2} \sqrt{\frac{s^2_f}{n_f} +\frac{s^2_m}{n_m}}[/tex]
The degrees of freedom are given by:
[tex] df = n_f +n_m -2= 40+40-2= 78[/tex]
The confidence level is 0.95 or 95% the significance is [tex]\alpha=0.05[/tex] and [tex]\alpha/2 = 0.025[/tex] and the critical value for this case is:
[tex]t_{\alpha/2} =1.99[/tex]
And replacing we got:
[tex](820-760) -1.99 \sqrt{\frac{160^2}{40}+ \frac{240^2}{40}} =-30.758[/tex]
[tex](820-760) +1.99 \sqrt{\frac{160^2}{40}+ \frac{240^2}{40}} =150.758[/tex]