Respuesta :
Answer:
a = 0.929
b= 0.932
d= 1918cm³/mol
Explanation:
check below for more answer explanation
Following are the solution to the given points:
Given:
[tex]T_C = 282.3 \ K \\\\T = 298.15 \ K \\\\ T_r = \frac{T}{T_c} \\\\ T_r= 1.056 \\\\P_c=50.4 \bar \\\\ P = \bar{12} \\\\ P_r= \frac{P}{P_c} \\\\P_r= 0.238\\\\[/tex]
To find:
points=?
Solution:
a)
[tex]B=-140 \ \frac{cm^3}{mol} \\\\C = 7200 \ \frac{cm^6}{mol^2}\\\\ V=\frac{RT}{P}=2066 \ \frac{cm^3}{mol}\\\\[/tex]
Given:
[tex]\frac{PV}{RT}= 1+ \frac{B}{V}+\frac{C}{V^2}\\\\ V=?\\\\ V= 1919 \ \frac{cm^3}{mol}\\\\Z=\frac{P.V}{R.T}= 0.929\\\\[/tex]
(b)
[tex]B_0 = 0.083 -\frac{0.422}{T^{1.6}_{r}}= -0.304\\\\ B_1= 0.139 -\frac{0.172}{T^{4.2}_{r}}= 2.262 \times 10^{-3}\\\\ z=1+(B_0+\omega B_1 \ \frac{P_r}{T_r} = 0.932 \\\\ V= \frac{Z\cdot R \cdot T}{P} = 1924 \frac{cm^3}{mol}[/tex]
(c)
For Redlich/Kwong EOS:
[tex]\sigma=1\\\\ \varepsilon = 0\\\\ \Omega = 0.08664\\\\ \Psi = 0.42748 \\\\[/tex]
[tex]\alpha (T_r) = T_{r}^{-0.5}\\\\ q\ T_r= \frac{\Psi \alpha \ T_r}{\Omega \ T_r}\\\\\beta\ T_r , P_r= \frac{\Omega \ P_r}{ T_r}\\\\[/tex]
Calculating the value of Z and by assume: [tex]Z=0.9\\\\[/tex]
Given:
[tex]\to z = 1+B(T_r), P_r - q (T_r) \beta (T_r), P_r \frac{Z-\beta(T_r) , P_r}{(Z)+\varepsilon \beta (T_r), P_r (Z)+\sigma \beta (T_r), P_r }[/tex]
Finding the value of z:
[tex]Z=0.928\\\\ V=\frac{ZRT}{P} = 1916.5 \ \frac{cm^3}{mol}\\\\[/tex]
(d)
For SRK EOS:
[tex]\sigma =1\\\\\varepsilon = 0\\\\ \Omega= 0.08664\\\\ \Psi= 0.42748 \\\\\alpha (T_r) \omega =[ 1+ 0.480 + 1.574 \omega -0.176 \omega^2 (1-T_r^{\frac{1}{2}})]^2\\\\ \alpha (T_r)=\frac{\Psi \alpha (T_r) , \omega}{\Omega \ T_r}\\\\\beta (T_r), P_r=\frac{\omega\ P_r}{T_r}\\\\[/tex]
Given:
[tex]z = 1+B(T_r), P_r - q (T_r) \beta (T_r), P_r \frac{Z-\beta(T_r) , P_r}{(Z)+\varepsilon \beta (T_r), P_r (Z)+\sigma \beta (T_r), P_r }[/tex]
Finding the value of z:
[tex]z=0.928\\\\V=\frac{ZRT}{P} = 1918 \ \frac{cm^3}{mol}\\\\[/tex]
(e)
For Peng/Robinson EOS:
[tex]\sigma =1+\sqrt{2}\\\\\varepsilon = 1-\sqrt{2}\\\\ \Omega= 0.07779\\\\ \Psi= 0.45724 \\\\\alpha (T_r) \omega =[ 1+ 0.37464 + 1.5422 \omega -0.26992 \omega^2 (1-T_r^{\frac{1}{2}})]^2\\\\ \alpha (T_r)=\frac{\Psi \alpha (T_r) , \omega}{\Omega \ T_r}\\\\\beta (T_r), P_r=\frac{\omega\ P_r}{T_r}\\\\[/tex]
Learn more:
brainly.com/question/19954140