Respuesta :
Answer:
(A)The height of each pyramid is One-half h units.
Step-by-step explanation:
Height of the Cube = h units
Volume of the Cube [tex]=h^3 $ cubic units[/tex]
If Base of the cube =Base of the square pyramid
Base of the square pyramid = h units
[tex]\text{Volume of a Pyramid}=\dfrac{1}{3}*Base Area*Height[/tex]
[tex]\text{Volume of One Pyramid}=\dfrac{1}{3}*h^2*Height[/tex]
[tex]\text{Volume of Six Pyramids}=6*\dfrac{1}{3}*h^2*Height\\=(2h^2*Height)\:cubic\:units[/tex]
Since Volume of the Cube = Volume of Six Square Pyramids
Then:
[tex]2h^2*Height=h^3\\Height=\dfrac{h^3}{2h^2} \\$Height of each pyramid =\dfrac{1}{2}h \:Units[/tex]
Answer:
A= the Height is 1/2
Step-by-step explanation:
Just took the test on edge 2020