The angle θ1\theta_1 θ 1 ​ theta, start subscript, 1, end subscript is located in Quadrant II\text{II} II start text, I, I, end text , and cos⁡(θ1)=−211\cos(\theta_1)=-\dfrac{2}{11} cos(θ 1 ​ )=− 11 2 ​ cosine, left parenthesis, theta, start subscript, 1, end subscript, right parenthesis, equals, minus, start fraction, 2, divided by, 11, end fraction . What is the value of sin⁡(θ1)\sin(\theta_1) sin(θ 1 ​ ) sine, left parenthesis, theta, start subscript, 1, end subscript, right parenthesis ?

Respuesta :

The sine of an angle θ is positive in quadrant II, and the value of sine θ is [tex]\mathbf{ \frac{\sqrt{117}}{11}}[/tex]

The given parameters are:

[tex]\mathbf{cos(\theta_1)=-\frac{2}{11}}[/tex]

Using trigonometry ratio, we have:

[tex]\mathbf{sin^2(\theta) + cos^2(\theta) = 1}[/tex]

Substitute [tex]\mathbf{cos(\theta_1)=-\frac{2}{11}}[/tex]

[tex]\mathbf{sin^2(\theta) + (-\frac{2}{11})^2 = 1}[/tex]

Evaluate the square

[tex]\mathbf{sin^2(\theta) + \frac{4}{121} = 1}[/tex]

Subtract 4/121 from both sides

[tex]\mathbf{sin^2(\theta) = 1 - \frac{4}{121}}[/tex]

Take LCM

[tex]\mathbf{sin^2(\theta) = \frac{121 -4}{121}}[/tex]

Simplify the numerator

[tex]\mathbf{sin^2(\theta) = \frac{117}{121}}[/tex]

Take square roots of both sides

[tex]\mathbf{sin(\theta) = \pm \sqrt{\frac{117}{121}}}[/tex]

This gives

[tex]\mathbf{sin(\theta) = \pm \frac{\sqrt{117}}{11}}[/tex]

From the question, we understand that angle θ is located in quadrant II.

The sine of an angle θ is positive in quadrant II

So, we have:

[tex]\mathbf{sin(\theta) = \frac{\sqrt{117}}{11}}[/tex]

Hence, the value of sine θ is [tex]\mathbf{ \frac{\sqrt{117}}{11}}[/tex]

Read more about quadrants at:

https://brainly.com/question/7196312

Q&A Education