Respuesta :

Answer:

[tex]\frac{x}{\sqrt{x^2+9}}[/tex]

Step-by-step explanation:

Let [tex]u=\arctan(\frac{x}{3})[/tex].

Then [tex]\tan(u)=\frac{x}{3}[/tex].

Construct a right triangle.

Make one of the non-right angles [tex]u[/tex].

Recall [tex]\tan(u)[/tex] is equal to the ratio of the side that is opposite to [tex]u[/tex] to the side that is adjacent to [tex]u[/tex].

This means opposite side [tex]=x[/tex] while adjacent side[tex]=3[/tex] since [tex]\tan(u)=\frac{x}{3}=\frac{\text{opposite}}{\text{adjacent}}[/tex].

We can find the hypotenuse by using the Pythagorean Theorem.

[tex](x)^2+(3)^2=(\text{hyp})^2[/tex]

[tex]x^2+9=(\text{hyp})^2[/tex]

Take the square root of both sides:

[tex]\sqrt{x^2+9}=\text{hyp}[/tex].

Recall [tex]\sin(u)[/tex] is equal to the ratio of the side that is opposite to [tex]u[/tex] to the hypotenuse.

[tex]\sin(\arctan(\frac{x}{3}))[/tex]

[tex]\sin(u)[/tex] -->Because we let the inside equal [tex]u[/tex].

[tex]\frac{x}{\sqrt{x^2+9}}[/tex] -->Because [tex]\sin(u)=\frac{\text{opp}}{\text{hyp}}[/tex]

Q&A Education