Which expressions are equivalent to [tex]3\sqrt{128} ^2[/tex] SELECT 3 CORRECT ANSWERS
The expressions [tex]\rm \sqrt[3]{128} ^x[/tex] are equivalent to [tex]\rm 128^{x/3}, \ 128^{3/x}[/tex], and [tex]4\sqrt[3]{2} ^x\\[/tex].
The product of two or more numbers is the result of multiplying these numbers.
The given equation is;
[tex]\rm \sqrt[3]{128} ^x[/tex]
First we rewrite or solve the expression again.
[tex]\rm= \sqrt[3]{128} ^x\\\\= 128^{x/3}\\\\= 128^{3/x}[/tex]
And the other correct option is;
[tex]\rm =\sqrt[3]{128} ^x\\\\= \sqrt[3]{2\times 2\times 2\times 2\times 2\times 2 \times 2} ^x\\\\= \sqrt[3]{2\times 2\times 2\times 2\times 2\times 2 \times 2} ^x\\\\ = \sqrt[3]{2^3\times 2^3 \times 2} ^x\\\\ =2 \times 2 \sqrt[3]{2} ^x\\\\ =4\sqrt[3]{2} ^x\\[/tex]
Hence, the expressions [tex]\rm \sqrt[3]{128} ^x[/tex] are equivalent to [tex]\rm 128^{x/3}, \ 128^{3/x}[/tex], and [tex]4\sqrt[3]{2} ^x\\[/tex].
Learn more about power property here;
brainly.com/question/2709494
#SPJ2