Respuesta :

Answer:

the three that are circled

Step-by-step explanation:

The expressions [tex]\rm \sqrt[3]{128} ^x[/tex] are equivalent to [tex]\rm 128^{x/3}, \ 128^{3/x}[/tex], and [tex]4\sqrt[3]{2} ^x\\[/tex].

What is product property quotient?

The product of two or more numbers is the result of multiplying these numbers.

The given equation is;

[tex]\rm \sqrt[3]{128} ^x[/tex]

First we rewrite or solve the expression again.

[tex]\rm= \sqrt[3]{128} ^x\\\\= 128^{x/3}\\\\= 128^{3/x}[/tex]

And the other correct option is;

[tex]\rm =\sqrt[3]{128} ^x\\\\= \sqrt[3]{2\times 2\times 2\times 2\times 2\times 2 \times 2} ^x\\\\= \sqrt[3]{2\times 2\times 2\times 2\times 2\times 2 \times 2} ^x\\\\ = \sqrt[3]{2^3\times 2^3 \times 2} ^x\\\\ =2 \times 2 \sqrt[3]{2} ^x\\\\ =4\sqrt[3]{2} ^x\\[/tex]

Hence, the expressions [tex]\rm \sqrt[3]{128} ^x[/tex] are equivalent to [tex]\rm 128^{x/3}, \ 128^{3/x}[/tex], and [tex]4\sqrt[3]{2} ^x\\[/tex].

Learn more about power property here;

brainly.com/question/2709494

#SPJ2

Q&A Education